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A combined pFFT-multipole tree code, unsteady panel
method with vortex particle wakes
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SUMMARY

Potential flow solvers for 3-D aerodynamic flows are commonly used in industrial applications. Two main
difficulties preventing the even more widespread use of these codes are the limitations on the number of
discretization elements and the user expertise and effort required to specify the wake location. In the paper
we present an automatic wake generation strategy for a potential flow solver, and accelerate the method
using a pFFT-Fast Multipole Tree algorithm. The combined method can be used to simulate both steady
and unsteady flows. The steady state solution is achieved by running an unsteady flow simulation until
it reaches a steady state. Computation results are given to demonstrate that the method is fast enough to
automatically simulate entire heaving and flapping wing crafts in under and hour on a desktop computer.
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1. INTRODUCTION

Hess and Smith, while working at Douglas Aircraft company in the early 1960s, started work on
what is now commonly referred to as the Aerodynamic Panel Method [1]. The panel method is
a boundary element method (BEM) approach for solving the potential flow around aerodynamic
bodies. Since Hess and Smith first developed the panel method, the aerospace industry and multiple
research institutions have further investigated and advanced the approach [2–6]. Panel methods
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continue to be widely used for initial design studies due to their ease of use and rapid solution
times. The ease of use is a result of the surface only discretization. Although easy to use, most
modern panel methods have several drawbacks, mostly resulting from the geometry discretization
requirements, and the limit on the number of discrete elements allowed for a given simulation.
In addition, most panel method implementations require significant user expertise and effort to
determine and specify wake positions and wake–body intersections. In this paper we present a
new simulation program, FastAero, which addresses the issues with panel methods. The approach
is based on advances made in electrostatic simulations (precorrected FFT [7]), and in large n-
body interaction problems (Fast Multipole Tree [8]). Similar acceleration approaches have been
previously used in panel methods and vortex particle methods [9, 5].

The panel method which is presented in this paper implements a Green’s Theorem Boundary
Integral Equation formulation to determine the potential on the surface of the body. In addition,
the trailing wake shed by the wing is represented using a vortex particle approach. The vortex
particle approach allows the vorticity in the wake to advect automatically in the domain for both
steady and unsteady flow simulations. A similar coupled potential flow vortex particle approach
is presented in the work of Voutsinas et al. [10] with application to wind turbine analysis.
A precorrected FFT (pFFT) accelerated iterative integral equation solver [7] is incorporated to
determine the potential flow solution for the fixed body geometry. In addition to the pFFT, the
simulation tool also uses a Fast Multipole Tree (FMT) algorithm [8, 11] to rapidly compute the
velocity contribution from the time varying shedded wakes. The FMT algorithm is a variation
on the Barnes–Hut tree code [11] and the Greengard Fast Multipole Method [8]. The combined
potential flow-vortex particle wake approach is novel in that it allows a rapid automatic generation
and evolution of the domain vorticity. The method is found to be particularly effective for unsteady
applications involving variable geometries, such as flapping wings. In such cases, the proposed
approach delivers fast and accurate solutions where more sophisticated higher fidelity models based
on the Euler or Navier–Stokes equations are impractical.

In the first section we introduce the governing fluid dynamic equations used in FastAero for
steady and unsteady flow simulations. The second section of this paper describes the Boundary
Integral Equation (BIE) and the Boundary Element Method (BEM) for computing potential flow.
Following this, algorithms such as the pFFT and the FMT are briefly presented to introduce these
techniques for improving computational efficiency. Finally, results are presented to demonstrate
the effectiveness of the approach applied to both steady and unsteady simulations.

2. THE GOVERNING EQUATIONS

The problem geometry is illustrated in Figure 1. The flows we will consider are high Reynolds
Number incompressible flows, and we will assume potential flow is an adequate approximation.
A point position in space at a given time, defined in the global reference frame is R(X, Y, Z , t).
The global reference frame is fixed in space. The position of any point in a global reference frame
is denoted by

Rp =RG + rGp (1)

where RG is the position of the centre of gravity of the body, and rGp is the position of point
p relative to the centre of gravity. For simplicity, a body fixed reference frame is considered
such that the position of points on the body relative to the centre of gravity are easily determined.
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Figure 1. The domain of interest includes all fluid external to the aircraft surface. The particles trailing
the wing section, the vertical tail and horizontal stabilizer represent regions in which vorticity exists due

to the lifting surface trailing shear layer.

Therefore, a given point on the body will have a velocity with respect to the global reference frame
given by

Vp =VG + VGp + (X× rGp) (2)

where VG represents the velocity of the centre of gravity in global coordinates, X is the an-
gular velocity, and VGp represents the relative motion of the surface due to deformation of the
body (e.g. deflection of a control surface). For clarity, we denote body velocities by V and fluid
velocities by U.

In the paragraphs which follow, we present the governing equations and assumptions we make
in the development of the flow solver.

2.1. Flow assumptions

The flow is assumed to be inviscid, incompressible and have constant density. Any vorticity in
the domain is localized on the thin wake regions trailing the lifting surfaces. Otherwise, the
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flow is assumed to be irrotational. These assumptions greatly simplify the form of the governing
equations.

2.2. Velocity definition

The fluid velocity, U(R, t) at a given point in the domain is defined as the superposition of a scalar
potential component, U�(R, t), and a vector potential component, U�(R, t), using a Helmholtz
decomposition [12]

U(R, t) =U�(R, t) + U�(R, t) = ∇� + ∇ ×W (3)

The scalar potential component of the velocity is irrotational and any vorticity effects are captured
in the vector potential component.

2.3. The continuity equation

The governing continuity equation for a constant density fluid is expressed in differential form as

∇ · U= 0

Substituting the velocity potential relationships into the continuity equation, the resulting equation
simplifies to

∇ · (∇� + ∇ ×W) = ∇ · (∇�) = ∇2�= 0 (4)

which is the Laplace’s equation for the scalar potential.

2.4. The vorticity, velocity, and vector potential relationships

The vorticity in the domain, x(R, t), is defined as the curl of the velocity

∇ ×U=x
The velocity due to the vector potential, W, is

∇ ×W=U�

Substituting the vector potential velocity relationship into the definition of the vorticity results in:

∇2W=−x
which is a vector Poisson equation relating the vector potential to the vorticity.

The vorticity evolution equation is derived from the incompressible Euler equations

�U
�t

+ U · ∇U=−∇p

�
(5)

where �, is the fluid density, and p is the pressure. Taking the curl of Equation (5), the resulting
equation for the vorticity evolution in the domain is [12]

�x
�t

+ U · ∇x=x · ∇U (6)
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where the term x · ∇U on the right-hand side represents the vorticity stretching (or how the
strength and magnitude of the vorticity changes as it is exposed to velocity gradients in the
flow field).

2.5. The boundary conditions

At any point on a solid surface in the domain, a no penetrating flux boundary condition is
given by

n̂ · U(R, t) = n̂ · (VG + VGp +X× rGp)

where n̂ is the outward unit normal vector on the body at a given point R on the body surface. In
terms of the vector and scalar potentials, the boundary condition is

n̂ · (∇� + ∇ ×W) = n̂ · (VG + VGp +X× rGp) (7)

We note that due to the inviscid flow assumption, only the normal velocity boundary condition is
applied at the body surface.

In the global reference frame, the fluid velocity at the farfield satisfies

lim
R→∞U(R, t) = 0

which implies that any perturbations of the velocity field due to body motion decay to zero infinitely
far from the body.

2.6. The wing trailing edge Kutta condition

Since the flow is assumed to be inviscid, a Kutta condition is applied at all wing trailing edges. The
Kutta condition prescribes a jump discontinuity in the surface potential across the geometric cusp
which represents the trailing edge, thereby resulting in smooth and finite trailing edge velocities.
In order to prescribe the streamwise vorticity release at the trailing edge, a linearized version of
the pressure continuity at the trailing edge is used [13]

�upper − �lower = ��wake (8)

Here, the subscripts upper and lower refer to points on the upper and lower surfaces of the trailing
edge of the wing. This Kutta condition is illustrated in Figure 2.

For unsteady flows, a time dependent component of the Kutta condition is also enforced. This
additional condition requires that any increase in bound vorticity on the wing be balanced by an
equivalent increase in vorticity in the wake. This increased vorticity is oriented in the direction
parallel to the trailing edge. The formal statement for this condition is that the combined change
with respect to time of the wing bound circulation and the wake circulation add to zero

[
d�span

dt

]
wing

= −
[
d�span

dt

]
wake

(9)

where � represents the circulation strength of the wing and body. One can easily relate the
circulation to the vorticity.
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Figure 2. A figure illustrating the Kutta condition governing the streamwise vorticity release into the
domain. The Kutta condition requires a potential jump across the wake corresponding to the difference

between the upper and lower trailing edge potentials.

2.7. The pressure–velocity relationship

The Bernoulli equation is used to determine the forces and pressures on the body. Since a potential-
vorticity approach is used, we briefly derive the applicable unsteady Bernoulli equation [14]. The
incompressible Euler equations yield

�U
�t

+ U · ∇U= −∇p

�
(10)

If we consider those regions of the flow which have zero vorticity (all of space excluding the
trailing vortex wake region), the resulting equation is

�U
�t

+ 1

2
∇|U|2 =−∇p

�
(11)

The definition of the velocity, given by Equation (3), can be substituted resulting in

�(∇� + ∇ ×W)

�t
+ 1

2
∇|∇� + ∇ ×W|2 =−∇p

�
(12)

Collecting like terms, and re-arranging, we obtain

�(∇ ×W)

�t
+ ∇ ��

�t
+ 1

2
∇|∇� + ∇ ×W|2 + ∇

(
p

�

)
= 0 (13)

Integrating Equation (13) along the streamline from surface point x1, to a farfield reference point
at ∞; where at R=∞, Ut = 0→t∞ = 0, and p= p∞; results in

∫ px1

∞
�(∇ ×W)

�t
dC +

(
��

�t x1
+ 1

2
|∇� + ∇ ×W|2x1

)
= p∞ − px1

�
(14)

Furthermore, we note that the term ��/�t is defined in an Eulerian reference frame. We can
compute the change in potential with respect to time for a point on the body surface by converting
to a body Lagrangian reference frame

��

�t

∣∣∣∣
Eulerian

= ��

�t

∣∣∣∣
body

− (VG + VGp + (X× rGp)) · ∇� (15)
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The overall unsteady Bernoulli equation is therefore

∫ px1

∞
�(∇ ×W)

�t
dC + ��

�t

∣∣∣∣
body

− (VG + VGp + (X× rGp)) · ∇� + 1

2
|∇� + ∇ ×W|2

= p∞ − px1
�

(16)

From this pressure–velocity relationship, the forces and moments can be computed by integration.

3. THE BOUNDARY INTEGRAL EQUATIONS FOR THE VECTOR AND
SCALAR POTENTIALS

In the section which follows, the implementation of the above theory is discussed. First, the bound-
ary integral equation formulations are presented followed by some more specific implementation
details.

3.1. The Laplace’s equation in integral equation form

In the method presented in this paper, integral equations are used to determine the potential flow
solution as well as the vorticity induced velocity. In this section, the potential flow boundary
integral equation solution is outlined. The integral equation representation of Laplace’s equation
for the potential at any point, r, in the domain is

�(r) = 1

4�

∫ ∫
S′
b

�(r′) �
�nr′

1

‖r − r′‖ dS′
b

+ 1

4�

∫ ∫
S′
w

��wake(r
′) �

�nr′
1

‖r − r′‖ dS′
w − 1

4�

∫ ∫
S′
b

��

�nr′
(r′) 1

‖r − r′‖ dS′
b

In this equation, Sb represents the surface of the body, while Sw represents the portion of the wake
sheet defined using dipole sheets (the buffer wake region to be described below). The no-flux
boundary condition applied to the potential flow integral equation is

��

�nr′
(r′) = n̂r′ · (VG + VGp + (X× rGp) − ∇ × �) (17)

From this, an integral equation for the unknown potential �(r) can be expressed as

�(r) = 1

4�

∫ ∫
S′
b

�
�
�n

1

‖r − r′‖ dS′
b + 1

4�

∫ ∫
S′
w

��wake
�
�n

1

‖r − r′‖ dS′
w

− 1

4�

∫ ∫
S′
b

[n̂ · (VG + VGp + (X× rGp) − U�)] 1

‖r − r′‖ dS′
b (18)
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The farfield boundary conditions on the potential will be satisfied [15]. Once the potential is
known, the flow field for the entire domain is also known. At each time step, it is necessary to
solve the boundary integral equation given in Equation (18).

The integral equation for computing the velocity in the domain, away from the body surface,
due to the body and wakes is determined by taking the gradient of the integral equation for the
potential

U�(r) = 1

4�
∇

∫ ∫
S′
b

�

(
�
�n

1

‖r − r′‖
)
dS′

b + 1

4�
∇

∫ ∫
S′
w

��wake

(
�
�n

1

‖r − r′‖
)
dS′

w

− 1

4�
∇

∫ ∫
S′
b

��

�n

(
1

‖r − r′‖
)
dS′

b + U� (19)

where, again, ��/�n is known from the boundary conditions. In order to determine the tangential
surface flow velocity due to the potential, the gradient of the body surface potential is evaluated.

As in most boundary element methods, the surface of the body is discretized into body panels
or elements, and the surface singularity strengths (single and double layers) are represented using
basis functions. In our implementation, a surface grid of triangles and quadrilaterals is used to
represent the overall geometry, with � and the boundary condition ��/�n on the surface represented
using constant basis functions. The integral equation is satisfied at specified centroidal collocation
points [16], generating a linear system of equations

[A][/] = [B]
[
�/
�n

]
(20)

The matrices [A] and [B] represent the discretized double layer and single layer integrals,
respectively. Both of these matrices are dense because the normal velocity at a point contributes
to the potential globally. The individual entries in the [A] and [B] matrices are integrals of the
single and double layer Green’s functions over triangular or quadrilateral elements. Analytical
expressions for these integrals are presented in Hess and Smith [17] as well as in Newman [18].

Although, we give here a description of the method for constant basis functions, the use of
higher order approximations is also possible [19].

3.2. The integral equation relationships for the vorticity in the domain

The vector Poisson equation governs the vector velocity potential. In integral form, the vector
potential due to the vorticity in the domain is

W(R, t) = 1

4�

∫ ∫ ∫
V ′

x

‖R − R′‖ dV ′

The vorticity induced velocity is determined by taking the curl of the above equation

∇ ×W(R, t) =∇ × 1

4�

∫ ∫ ∫
V ′

x

‖R − R′‖ dV ′ (21)

Similarly, the gradient of the velocity term used for the vorticity stretching in the vorticity
evolution equation is determined by taking the gradient of the above relationship.
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3.3. The representation of the vorticity in the domain

In order to model the vorticity in the domain a vortex particle method is used. The domain vorticity
is represented as the summation over all of the discrete vortex particles in the domain, which is
written as [20]

x(R, t) = ∑
p
xp(t)volp�(R − Rp(t))= ∑

p
ap(t)�(R − Rp(t))

where xp(t)volp is written as ap(t). Here, volp refers to the volume of the fluid domain which is
represented by the vortex particle.

For a vortex particle representation of the vorticity, the discrete vector potential can be
determined as

Wp(R, t) = 1

4�

∑
p
a(R, t)

1

‖R − Rp(t)‖
The vorticity induced velocity can be computed from

∇ ×Wp(R, t) = 1

4�

∑
p

∇ 1

‖R − Rp(t)‖ × a(R, t) (22)

Similarly, the gradient of the velocity term used for the vorticity stretching in the vorticity
evolution equation is

∇(∇ ×W(R))= 1

4�

∑
p

∇
(

∇ 1

‖R − Rp(t)‖ × a(R, t)

)
(23)

We use a Lagrangian reference frame for the evolution of the vorticity, such that the position
Rp(t) of a discrete vortex particle at any given time is governed by

d

dt
Rp(t) =Up(R(t), t) (24)

The evolution of the vortex particle strength as it travels through the domain can be represented as

Dap(t)

Dt
= ap(t) · ∇Up(R(t), t) (25)

Each of the vortex particles, or vortons, has an associated core in order to mimic the physical
vortex core as well as to reduce the numerical instability of the vortex interactions. More information
about vortex particle core functions and vortex methods in general can be found in Reference [20].
The evaluation of the vorticity induced vector potential can be represented as a matrix vector product

[C][a] =Wp

Here the vorticity is known and a single matrix vector product results in the vector potential.

3.3.1. Discrete form of the vorticity evolution equation. The evolution of vorticity is computed by
discretizing the ODEs governing the vorticity evolution and computing the vortex particle position
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at time, t + 1. A simple approach to this would be to use a forward Euler equation

R(t + 1) =R(t) + Up(R(t), t)�t (26)

and then update the strength of the vortex as

ap(t + 1) = ap(t) + ap(t) · ∇Up(R(t), t)�t (27)

It should be noted that the use of a higher order symplectic method [21], such as a Runge–Kutta
scheme will be beneficial in increasing solution fidelity.

4. FASTAERO WAKE REPRESENTATION

A significant reduction in user setup effort in FastAero compared with traditional potential flow
methods is a direct result of the wake model adopted. Below we discuss the finer details of the
FastAero wake model and its interaction with the potential flow solution. More specifically, we
describe, the conversion from a dipole wake to a vortex wake.

4.1. The general wake description

The wake model used in FastAero is composed of two parts, a dipole buffer wake sheet, and a
vortex particle wake. Both the buffer wake sheet and the vortex particle wake are used to represent
the wing trailing vorticity; however, the means by which the representation is accomplished is
different. The buffer wake sheet and the vortex particles are shown in Figure 3.

Figure 3. A description of the unknown and known buffer wake regions at the trailing edge of a wing. Note
also the conversion of the line vortices resulting from the constant strength dipoles, into point vortices.
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The buffer wake sheet is a short dipole/doublet sheet trailing all lifting surfaces. In the spanwise
direction, the buffer wake is comprised of the same amount of panels as the wing trailing edge.
In the streamwise direction the buffer wake sheet is comprised of two panels. The closest panel to
the lifting surface trailing edge has a length of cVG�t and a strength which is to be determined
by the Kutta condition at the current time step, while the second streamwise panel has a length
of VG�t and a strength corresponding to the previous timestep trailing edge potential jump. The
constant c is traditionally in the range of 0.3–0.5 (where c= 0.5 results in the vorticity at the new
time t being added to the domain approximately at the midpoint of the distance travelled by a
fluid particle during that timestep). The buffer wake sheet is essential to satisfy the potential jump
in the wake at the wing trailing edge imposed by the potential Kutta condition. If a different form
of the Kutta condition was used, the requirements for the buffer sheet may change or even be
eliminated.

The vortex particle wakes are used to represent the wake vorticity outside the buffer region.
At each time step, the known buffer wake sheet is converted into the equivalent vortex particle
representation which is advected using Equations (26) and (27) above.

4.2. Conversion of the dipole wake sheet to vortex particles

A standard result in potential flow methods is that the change in dipole strength along a surface
in a given direction is equivalent to vorticity oriented in the surface tangential direction normal to
the dipole gradient [14]. In the case of constant dipole panels, the vortex analogue is a vortex ring
around the perimeter of the given panel. Hence, the strength of the vortex line segment between two
adjacent constant strength dipole panels is merely the difference in their strengths. This result is
helpful, since the dipole buffer wake needs to be converted into an equivalent vortex representation.

The buffer wake is converted into vortex particles at each time step. This occurs in a two
step process. First, vorticity in the spanwise direction is computed by determining the difference
between the previous wake dipole strength and the current dipole strength. The vorticity in the
streamwise direction is also computed in a similar manner, where differences in spanwise dipole
strength are taken. In the second step, the downstream equivalent vortex on the dipole sheet must
be cancelled out by an equal yet opposite vortex. This process is illustrated in Figure 3. Finally,
the vortex particles are created by collapsing the line vortices surrounding the constant dipole, into
a vortex particle.

4.3. Handling wing–body intersections in FastAero

Most aerodynamic simulations involve the intersection of a lifting surface with a body or fuselage.
Due to the nature of the FastAero wake model special treatment is required in these cases. If a
direct conversion of dipole sheets into vortices is performed, there would be a strong vortex shed
at the wake–body intersection. This strong vortex streaming down the fuselage is non-physical
and exists only to account for the required total potential jump in the wake. In the FastAero, we
use an alternative method to account for the potential jump. Instead of streaming the strong vortex
along the side of the body, the vortex is passed into the body or fuselage and down the centreline
of the body (in the case of a symmetric wing–body problem the through body vorticity appears as
a vortex in the spanwise direction only). By passing the vortex through the body, the vortex wake
representation of the wake forms a complete closed loop, which is equivalent to a dipole sheet. In
effect, the vortex passed through the body represents the body bound vorticity, while the vorticity
in the wake represents the shed vorticity. By examining the wake as an equivalent dipole, the

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:1399–1422
DOI: 10.1002/fld



1410 D. J. WILLIS, J. PERAIRE AND J. K. WHITE

Figure 4. A description of the FastAero wakes. The figure shows the vortex particle wakes as well as the
dipole buffer wake and the through body vortex for a symmetric configuration.

required jump in total potential exists due to the closure of the wake vorticity rings. Furthermore,
the potential for which the integral equation is solved in FastAero, is continuous along the body
where the equivalent vortex wake exists, and as such, there is no need to introduce a cut in the
fuselage to ensure that the wake aligns with the body or that the wake and body geometries match.
Details are presented in Reference [22].

In order to clarify the wake body problem, Figure 4 is presented. In this figure, the FastAero
wake model for wing–body problems is depicted.

4.4. Summary of solution steps

In order to simulate a body shedding wakes, it is necessary to compute velocities and use those
velocities to advect the wake. In the FastAero program this is accomplished by using a time
stepping procedure. The following steps occur during each time step in the solution process:

Step 1: Solve the potential flow equation (18), to determine the unknown potential values on
the surface of the body and the potential jump in the wake for the current timestep. The value of
��/�n is computed for the current body translational and rotational velocities. The current domain
vorticity influence, U�, is also calculated according to Equation (17). Included in this flow solution
is the determination of the potential jump across unknown buffer wake (Figure 3), which enforces
the potential Kutta condition (Equation (8), and Figure 2).

Step 2: Determine the strength of the vorticity that needs to be released into domain. This new
vorticity is the converted vorticity from the previous timestep known buffer wake layer (see Figure
3). The time dependent spanwise vorticity is determined after converting the change in strength of
the buffer sheet from time t to a time t + 1 to a line vortex according to Equation (9).

Step 3: Determine the velocity and gradient of the velocity influence from the body onto the
vortex particles in the wake using the boundary integral equations (19). This involves evaluating
the gradient of the potential flow integral equation at each of the vortex particle positions. This is
a single matrix vector product operation.

Step 4: Determine the velocity and gradient of the velocity influence of each of the wake
particles on each of the other wake particles using the integral equation for the vorticity–velocity
relationship (Equations (22) and (23)). This is results in a matrix vector product evaluation.
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Step 4(a): If necessary, compute the pressures and forces acting on the body, prior to updating
the position and strength of the wake. This is an application of the Bernoulli equation (Equation
(16)), to determine the pressure from the velocity.

Step 5: For each vortex particle in the wake, update the particle position and vortex particle
strength using the Lagrangian vortex evolution equations (24) and (25). This involves determining
the new position and strength by solving the ODEs governing the evolution of the vorticity.

Step 6: Compute the wake to body influence based on the new wake vorton positions and
strengths. This is done by evaluating the matrix vector product represented by the Poisson equation
governing the vorticity–velocity relationship (Equation (22)).

Step 7: Start over at (1) unless the iteration stopping condition has been reached.

4.5. The farfield approximation model

Once vortex particles are sufficiently far away from the body, they are lumped into multipole
expansion representations, and treated as simple lumped vortex multipole particles. These multipole
representations have no inter-particle influence in the farfield; however, they do have influence on
the near field vortices and the body. Since these multipole representations have no inter-particle
influence, they simply convect with the freestream flow.

5. ACCELERATING THE FLOW SOLVER

The solution time and memory for the Boundary Element Method—Vortex Particle approach is
significant, especially when many surface elements and domain point vortices are used. In a typical
medium resolution simulation, the body may have 5000–10 000 panels and there may be 10 000–
15 000 wing trailing vortex particles. In addition to the large number of elements, the solution
must be computed for each timestep. In a typical simulation, we may require hundreds if not
thousands of time steps. For standard or direct iterative methods, as the number of unknowns
increase, the complexity of the solution increases with O(n3) or O(n2) depending on solution
method (here n represents the number of unknowns, elements and/or particles). It is possible to
use fast methods to reduce the solution complexity to O(n) or at least O(n log(n)). We briefly
present the methods used for accelerating the potential flow solution and the velocity–vorticity
evaluation.

5.1. The pFFT potential flow solver

In order to solve the discretized potential flow equation (Equation (20) representing the boundary
integral equation in Equation (18)) we implement a GMRES [23] iterative solver. As the matrix
A is dense, the main computational cost in the GMRES algorithm is computing the matrix vector
products (MVP), each of which costs O(n2) operations. The pFFT algorithm can be used to
compute dense matrix vector products associated with the single and double layer singularities
in O(n log(n)) time. The pFFT uses a Fourier domain multiplication to efficiently compute the
convolution products in the integral equation, and was originally developed by Philips and White
[7], based on approaches developed by Hockney and Eastwood [24]. Our implementation makes
use of the pFFT + + code developed by Zhu et al. [25].
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Figure 5. A schematic outlining the pFFT algorithm. The schematic demonstrates: (1) the projection of
the panel singularity strength onto the FFT grid; (2) the convolution operation becomes a multiplication
after being transformed to the Fourier domain, to give the grid potential; (3) after an inverse FFT, the grid
potential is interpolated back onto the panels/evaluation points; and (4) for nearby interactions the solution
is precorrected by subtracting the local grid interaction and adding the direct interactions. Overall the pFFT

algorithm computes an MVP in O(n log(n)) time.

During the initial pFFT setup an FFT grid is constructed in the domain surrounding the body.
The steps in the algorithm are (see Figure 5):

Step 1: The singularity strength (panel charge) is projected onto the FFT grid. The projection
operator acts locally, and hence, results in a sparse matrix [P]. The locality of the projection
operator is illustrated in Figures 5 and 6.

Step 2: The grid strengths are convolved by multiplication via a transformation to the Fourier
domain (using an FFT). Once the convolution is complete the result is transformed back to the
physical domain using an inverse FFT, giving the grid potentials.

Step 3: The grid potentials are interpolated back to the panels or evaluation points. The com-
putations involved are similar to the projection operation, and in the case of a Galerkin BEM
approach, the interpolation is precisely the transpose of the projection. The interpolation results in
a sparse matrix [I ].

Step 4: The nearby interactions are computed directly by subtracting the grid strengths and
adding the direct element to element interactions. The setup of this operation is the most costly
in the pFFT setup process due to both the grid correction and the local direct panel influence
calculations. In this case, the direct interactions are represented by the sparse matrix [D]L , and
the correction is represented by a local subtraction equivalent to [IL HL PL ], where the subscript
L , refers to local interactions.
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Figure 6. The pFFT grid overlay on the business jet. Points highlighted with ‘+’ markers are those non-zero
grid values after projection. The total FFT grid is a rectangular domain encapsulating the aircraft.

The resulting pFFT algorithm matrix vector product can be expressed in matrix form as

A� =[I H P + [DL − IL HL PL ]]�
Once the initial overhead of setting up the matrices is complete, the matrix vector product is a

multiplication and addition of sparse matrices. The resulting algorithm is one of the most efficient
methods currently available for performing the matrix vector products.

5.2. The FMT vorticity–velocity evaluation

The Fast Multipole Tree algorithm is an octree based approach for reducing the complexity of the
MVP evaluation from O(n2) to O(n log(n)). The FMT algorithm is a variant on the Barnes-Hut
[11] tree algorithm and Greengard’s Fast Multipole Method [8]. The FMT constructs an octree
structure complete with a multipole expansion of the source terms in each cell of the tree. The
MVP is determined by evaluating the appropriate multipole influences at the evaluation point. In
this section, we present the Fast Multipole Tree algorithm which is used. For further information
about the FMT algorithm, as well as the formulae for the multipole moments, refer to Greengard’s
treatise of the subject [8].

5.2.1. Setting up the FMT algorithm. The following describes how the multipole tree is setup (see
also Figure 7 for the octree structure):

Step 1: Construct a root cell enclosing all of the source points/panels. This cell is a level 1 cell,
or root cell.
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Figure 7. The general tree structure (note this is a 2-D quadtree, rather than a 3-D octree). The leaf cells
are shown with circles in the tree structure. Empty cells without data are shaded. In the current simulation

code, this tree structure is constructed using a top down approach starting from the root cell.

Step 2: Determine if the number of elements in the current cell is greater than the maximum
number of elements permitted per leaf cell. This maximum number of elements per leaf cell is
user specified and is typically between 10 and 15.

(a) If the number of elements in this cell is below the maximum allowed, the current cell is a
leaf cell. Proceed by computing the leaf cell multipole moment representing the singularity
strength distribution in cell. The leaf cell multipole moment is located at the centroid of
the leaf cell and compactly represents the distribution of particles in the leaf cell. This leaf
cell multipole expansion representation is determined by translating and adding all of the
particle representations or monopoles in the cell. Once the leaf cell centroidal multipole
representation is constructed, continue down the next branch of the tree.

(b) If the number of elements in this cell is larger than the maximum allowed, split the current
cell (now called a parent cell) into 8 sub-cells called children cells. Determine which
elements lie in each of the children, and construct new cells (only construct new cells for
those children which have elements inside of them). Cycle through each of the children
cells starting at step (2).

Step 3: Cycle through all cells, and propagate the leaf cell multipole up the tree using the
multipole translation operators, fully populating the cell-centroid multipole strengths at each level
of the tree. The children cell multipoles are translated and added to the parent cell. The end result
is a multipole representation of the particles in each of the tree cells at each of the octree levels
in the domain.

Having completed the above three steps, we have a sparse, yet sufficiently accurate approximation
representing the particles in each of the cells. By appropriate selection of octree cells and multipole
moments, the solution at an evaluation point can be determined.

5.2.2. Evaluation of the matrix vector product. In order to perform the FMT matrix vector product,
we execute the following recursive algorithm starting at the root cell:

Step 1: Check the current cell to see if it is far enough away from the evaluation point to be
considered a farfield interaction. This operation can be handled in many different ways (currently a
measure of the cell centroid to evaluation point distance combined with a cell side length measure
is used).
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Figure 8. A plot showing the perspective view of the wake development behind a
business jet, complete with the Octree representation. Note that in regions of higher

wake vortex particle density, the octree is refined.

(a) If the cell is sufficiently far away, evaluate the potential, velocity and/or gradient of
velocity at the evaluation point using the multipole expansion at the current cell centroid
and add it to the current value at the evaluation point.

(b) If the cell is not a farfield cell, and is not a leaf cell, cycle through all of the populated
children cells starting at step 1.

(c) If the cell is not a farfield cell, but is a leaf cell, evaluate the potential, velocity and/or
gradient of the velocity using the direct calculations and add the result to the current
evaluation point value. A direct computation is used for this portion of the flow, since
the multipole expansion is not deemed accurate enough, and there is no further octree
splitting to sufficiently separate the cell from the evaluation point.

An example of a practical application of the Fast Multipole Tree code for computing the vortex
influences behind a business jet is shown in Figure 8. In order to attain more efficient computations
for the MVP, there are several additional modifications which can be used when applying the FMT;
however, the basic method stands as described.

5.3. Using the pFFT and FMT in the solution process

The choice of appropriate acceleration method for each step of the algorithm is described.

5.3.1. The potential flow solution. For the potential flow linear system solution, we use a pFFT
approach embedded in a GMRES iterative solver. We use the pFFT due to the efficiency it
affords in evaluating a matrix vector product once the pFFT matrices are set up. Since, for a given
geometry, many MVPs are computed in the GMRES iterative solution process, it is well worth
absorbing the setup overhead of the pFFT if the resulting MVP is sufficiently faster than the FMT
counterpart.

5.3.2. The velocity influence computations. In order to perform the matrix vector products re-
quired for the velocity and velocity gradients, a Fast Multipole Tree algorithm is used. The FMT
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algorithm is used for (1) wake to wake interactions, (2) wake to body interactions, and (3) body
to wake interactions. The FMT is used for the velocity and gradient interactions for the following
reasons:

(1) Since the wake particles move, a complete system setup is required for each time step. Since
the pFFT precorrection step is significantly more expensive than that for the FMT, the FMT
is a better choice for this part of the simulation.

(2) The memory requirements are minimized when using the FMT to evaluate quantities in the
wake region. Since the FFT grid encloses the entire domain, when a pFFT approach is used
to evaluate quantities in the wake region, a sufficiently regular grid must be used. The FMT
is more versatile, time efficient and memory efficient for evaluating quantities in the wake
sufficiently far away from the aircraft body.

6. SAMPLE FLOW SIMULATION RESULTS

To demonstrate the applicability of the FastAero solution approach presented in this paper several
examples are examined.

6.1. Example 1: the wing startup case

In the first example, the unsteady lift forces resulting from a step function startup on a rectangular
wing are computed. The wing section is a NACA 0012 profile. The simulations were performed
with several different aspect ratio rectangular wings. The wing discretization consisted of 5280
quadrilateral panels (44 elements around the chord, 120 elements in the span). The angle of attack
for the simulation was 5◦. The discrete timestep was set to �t = 0.1, the velocity of fluid relative
to the wing was |U| = 1, with a wing chord of one unit.

The results of the simulations are compared with those presented for a vortex lattice approach
in Katz and Plotkin [14] in Figure 9(a), while the wake evolution in the domain is presented in
Figure 9(b).

From Figure 9(a) it can be seen that there is good agreement between the current approach and
that presented in Reference [14] using a vortex lattice method. It should be noted that the current
approach will have advantages over the vortex lattice approach when predicting the unsteady
induced drag as well as other properties which are affected by the geometry of the surface and the
thickness of the body.

6.2. Example 2: the heaving wing case

In this example, a heaving wing is examined, and compared with the Theodorsen 2-D, low amplitude
thin airfoil approximation [26]. The Theodorsen approximation of the Z -Force for a 2-D heaving
airfoil plate is [26]

Fz =−��UcC(k)
dh

dt
− ��

c2

4

d2h

dt2
(28)

where � represents the fluid density, c the wing chord, U the fluid velocity relative to the body.
The force deficiency factor C(k), is given by Theordorsen [26]. The wing used for this simulation
is the same NACA 0012 rectangular wing, with an aspect ratio of 12 used in the first example.
The number of wake particles in each simulation approaches 20 000 by the time several periods of
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Figure 9. Flow about a wing undergoing a sudden startup: (a) CL evolution with time. The results due to
Katz and Plotkin [14] are shown using (∗) markers for comparison; and (b) the actual wake evolution for an

AR= 8 wing. Note the wing tip vortex roll-up and initial startup vortex rollup.

motion are resolved. The timestep for each case was chosen in order to ensure a sufficient number
of simulation points were used to accurately resolve the solution.

The current simulation results are presented for both the overall 3-D vertical force as well
as for the centreline, quasi-2-D vertical force. The centreline 2-D vertical force is computed by
examining the pressures along the centreline of the wing and assuming that the behaviour is a good
approximation to the 2-D theory. The heaving velocity in each of the following cases is given by:

dh

dt
(t) = −0.05 sin(�t)

The reduced frequency of the oscillations is defined as

�r = �c

2Uref

where c is the wing reference chord, Uref is the reference velocity (in this case the relative velocity
between the wing and the fluid).

In Figures 10(a)–(d), results for the Z -force computation with time are presented. Note the
phase differences between the position, velocity and Z -force for the various reduced frequencies.
It can be seen that the Z -force is dominated by circulatory lift in low frequency applications;
however, for higher frequencies the effect of fluid acceleration in the unsteady Bernoulli equation
becomes significant, hence, the Z -Force tends to approach a phase corresponding to the position
(or acceleration).

From Figures 10(a)–(d), it can be seen that there is good agreement between the predicted forces
from Theodorsen’s thin airfoil small amplitude theory [26], and the computed forces. There is a
slight over prediction of the Z -force, which becomes more pronounced as the frequency rises.
This is suspected to be due to finite aspect ratio effects in the computed solution for both the 2-D
centreline approximation and the 3-D full wing simulation. Since the wing has a finite aspect ratio,
the trailing edge dropped vorticity has less of an effect than an equivalent infinite line vortex. Hence
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Figure 10. The results for the Z -Force component of a NACA 0012 aspect ratio 12 wing, undergoing
heave oscillations at several different reduced frequencies. Note, as the frequency increases, the Z -force
tends to trend with the phase of the position and acceleration, as expected, while the lower frequency
oscillations demonstrate a Z -force phase close to the velocity, as expected: (a) reduced frequency �r = �/2;
(b) reduced frequency �r = �/4; (c) reduced frequency �r = �/10; and (d) reduced frequency �r = �/40.

the Z -force reduction due to the newly released trailing edge vorticity is less than Theodorsen
predicts, resulting in a slightly higher Z -force. It can be seen for low and moderate reduced
frequencies as demonstrated in this example, that the computed solution matches well in both
phase and amplitude with Theodorsen’s theory. It should also be noted that the Kutta condition
implemented in the FastAero code will lose applicability as the reduced frequency becomes
larger.

6.3. Example 3: complex geometry full configuration simulation

In this example, we demonstrate the ability of the current approach to handle complex geometries,
such as full aircraft configurations. In this simulation, a 8650 panel business jet is presented
pictorially to demonstrate the wake roll-up. The number of vortex wake particles is up to 12 000
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Figure 11. Several figures demonstrating the application of the FastAero code to
complex configurations. Note: The full length of the wake used in the simulation
is not plotted in figures (a) and (b) in order to focus on the wake in the region
nearer the body: (a) illustration of the wake propagation at 5◦ angle of attack;
(b) a figure demonstrating the fuselage-wake particle behaviour; and (c) a figure
demonstrating a heaving motion for the aircraft. Note here that the wake is
complicated in shape and as such, an automatic wake generation is necessary.

particles. In this simulation, the versatility and true flexibility of the FastAero solver is highlighted.
Here again, the wake was generated automatically without user assistance.

The simulation of the business jet was performed for both a startup to steady state case, as well
as a heaving case. The results are presented graphically in Figures 11(a)–(c). While examining the
results it should be noted that other than prescribing the trailing edges that will shed vorticity, there
is no user assistance in the wake generation procedure. These simulations demonstrate completely
hands-off simulations from t = 0 to tfinal. In order to validate the solution, two separate studies
were performed. A convergence study was performed for the surface potential, yielding a rate of
convergence proportional to the number of panels as expected. In addition, the lift force at the
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Figure 12. The results of simulating an articulated flapping wing using FastAero. The sections
of wing between the joints are assumed to be rigid, however, may have varying washout

depending on the stroke position.

highest grid resolution was compared with a Felissa Euler [27] solution at the same grid refinement.
The results showed agreement to within 5 per cent. Considering the surface pressure computation
in the FastAero code is found to be rather inaccurate for triangular constant strength panels, this
result shows significant promise for future higher order versions of FastAero where the pressure
computations will be significantly more accurate.

The overall simulation to steady state takes approximately 30–60min using a moderate timestep
resolution, on a 3GHz desktop computer. It is expected that this time can be further reduced through
more efficient implementation of the multipole tree algorithm, data structure and overall computer
program. In addition, it should be mentioned that the simulation time depends significantly on the
choice of timestep, multipole and pFFT accuracy, as well as the farfield multipole wake model
implementation position.

6.4. Example 4: qualitative articulated flapping wing analysis

An example which demonstrates the strengths of the FastAero model is the case of flapping wing
flight. In a preliminary application of FastAero to the flapping flight problem, the wake and vorticity
evolution for a flapping articulated wing was simulated. The wing was prescribed to travel a length
of two spans per flapping cycle. Figure 12 shows the result of the simulation.

FastAero is particularly well suited to this flapping flight analysis. Firstly, the unsteady wake
model used in FastAero has the advantage of being automatic in both generation and evolution.
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This is essential to the flapping flight problem. In addition to the automatic wake generation, the
use of acceleration tools such as the pFFT and FMT methods permits the exploration of a system
with many degrees of freedom. Although we present only one solution in this paper, it is con-
ceivable that an optimal set of wing flapping parameters might be desired. In order to determine
the optimum flapping frequency, with the various joint degrees of freedom many hundreds of
simulations might be required. The FastAero tool is well suited due to the rapid solution times.

7. CONCLUSIONS

In this paper we presented a robust and efficient method for simulating the potential flow around
arbitrary bodies that reduces user effort by automatically generating wake sheets. The method uses
the precorrected FFT approach to accelerate the potential flow solution, while also implementing
a fast multipole tree algorithm to compute the velocity and vorticity stretching influences in the
domain. The approach has been demonstrated to be efficient and accurate for steady and unsteady
design and analysis problems. The method presented is particularly well suited to unsteady lifting
body flow simulations due to the use of the unique vortex particle approach. Computational results
presented demonstrate that FastAero is fast enough to automatically simulate entire heaving and
flapping wing crafts in under an hour on a desktop computer.
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